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A tensorial method is used to determine the equation of the representative surface of the dis- 
solution slowness vector from a vectorial analysis of the dissolution which in three dimensions 
is described in terms of an orientation dependent dissolution slowness vector. Calculations 
are derived for the trigonal class 32 and applied to singly rotated quartz crystals for which 
coefficients are evaluated up to the 1 6th order. The polar diagram of the dissolution slowness 
is presented for orientations, 0, in the range [ - 6 0  ~ , 60~ A numerical simulation of the dis- 
solution based on the vectorial analysis is used to undertake a systematic comparison of 
the shape of the theoretical dissolution profiles with the experimental Z' traces of differently 
oriented singly rotated quartz plates. For BT-cut plates an excellent agreement is found 
between theoretical and experimental results. For the AT-cut plates with 0 < 29 ~ the agree- 
ment is not so good. However, since these AT plates are cut in various quartz crystals the 
deviation may be attributed to dispersion in the measurement of the etch rate. Thus combining 
the vectorial analysis of the dissolution with a tensorial representation of the slowness surface 
provides a useful method for accurately determining the shape of the dissolution profiles of 
quartz crystals. 

1. Introduct ion 
In the past few years chemical etching [1-7] has been 
studied as an alternative procedure to prepare high- 
frequency quartz resonators. As compared with the 
mechanical lapping process which creates a damaged 
surface layer [1, 8, 9] chemical etching has the advan- 
tage of preventing misorientation of the surface of 
quartz crystals. 

However, some previous studies [10-17] on singly 
and doubly rotated quartz plates immersed in a con- 
centrated NH4F �9 HF solution provided evidence for 
a rapid variation in etch rate and in the shape of 
dissolution figures with orientation. Moreover, Tellier 
et al. [18] showed that the initial surface damage has 
no influence on the final texture of deeply etched 
quartz plates which is determined primarily by the 
crystal orientation and by the degree of perfection of 
the bulk structure. These observations have encour- 
aged these authors [19, 20] to develop a numerical 
simulation of the dissolution derived from the kin- 
ematic model [21-23] originally given by Lighthill and 
Whitman [22]. This bi-dimensional model has been 
confirmed by experimental results [19, 20] on the top- 
ography of the dissolution profiles of singly rotated 
quartz plates. 

Hence, recently [24] a vectorial analysis of the dis- 
solution problem was proposed and the result is that 
to determine the trajectory of a moving surface profile 
element we need to know the polar diagram of a 
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vector which characterizes the dissolution, namely the 
slowness dissolution vector, L. Now one may expect 
to predict the shape of the dissolution profiles of 
differently oriented quartz plates from the experi- 
mental polar diagram of L. Consequently the present 
work continues along this specific line and presents a 
tensorial method for obtaining the mathematical 
equation concerning this polar diagram. The math- 
ematical method is reported and a systematic com- 
parison of the theoretical predictions of the simulation 
with the experimental changes of Z '  surface profiles 
of singly rotated quartz plates on orientation is 
undertaken. 

2. Theoret ical  
2.1. The dynamical model of the dissolution 
In this section we are concerned with a brief pres- 
entation of the relevant results of a vectorial analysis 
of the dissolution which has been described elsewhere 
[24]. In the first step the main features of the math- 
ematical model are directly derived from the kinematic 
wave theory previously explored by Lighthill [22] and 
later by Frank [23]. These features can be characterized 
as follows. Let a rotated crystal plate of given orien- 
tation be the reference surface which lies parallel to 
the x2x3 plane and consider the cross section of a 
crystal surface presented in Fig. 1. The surface profile 
is supposed to be composed of a succession of linear 
profile elements, Ar(c0, c~ is the angle from the 
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Figure  1 Representation of the surface profile. ( . . . . .  denotes 
reference). 

reference surface. During the chemical attack a sur- 
face profile element of slope p = (Ox3/~x2), moves 
within the bulk crystal with a velocity v3 normal to the 
reference surface given by 

2)3 = ~ t  /~2 (1)  

If we express the moving surface profile x3(x2, t) 
as a function of two independent variables the coor- 
dinate x2 and the etching time t we get 

dx3 = pdx2 + vgdt  (2) 

Further by using the continuity equation [22, 24] we 
can show, under the assumption that the velocity % 
depends only on the local slope p i.e. on the local 
orientation e of the surface profile, that a surface 
profile element of given slope p propagates into the 
bulk along a linear trajectory called a characteristic. 
We can construct the characteristic trajectory of a 
profile element taking into account the following 
features 

(1) The slope of the characteristic is given by 

d x  3 7-3 3 

dx2 - p (~v3/~p) (3) 

(2) The position x2 of the profile element of  slope p 
satisfies the relation 

dx2 c~% 
- ( 4 )  

dt @ 

Thus after an etching time dt the initial element 
located at M (Fig. 2) has progressed into the bulk 
crystal in such a way it is now located at M' where 
MM' represents a vector, denoted for convenience by 
the propagation vector P, of components (dx2 ,  dx3) .  

Let n be the inward normal and v N be the dissolution 
rate (i.e. the normal velocity) of the surface element. 
Examination of Fig. 2 reveals at once that the velocity 

T 
x 3 

MR 
A ~  t o dt 

Figure 2 The geometry of the model assuming that dt = 1 sec. 

v 3 is not the component along the x 3 axis of a normal 
velocity vector VN defined as V~ = VNn. 

For  this purpose it is pertinent in a second step to 
introduce a vector associated with a profile element of  
orientation ~ and representing a physical quantity we 
are able to evaluate easily during the dissolution in 
such a way that the precise knowledge of this vector give 
us all the information that is needed to determine the 
propagation vector P. An analysis presented in a 
previous paper [24] demonstrated that the dissolution 
slowness vector L whose magnitude, L, is the recipro- 
cal of the dissolution rate and whose positive direction 
coincides with that of the inward normal unit vector 
n is suitable for both the determination of the propa- 
gation vector P and the simulation of the evolution of 
the dissolution profiles with repeated etchings. 

The dissolution slowness vector L with components 
along the x2 and x3 axes respectively given by 

L2 - plY3 (5) 

L3 = 1 / v 3  (6) 

has its extremity which in the (x2, x3) plane moves 
effectively along a polar diagram as the orientation 
of the surface element varies. From the definition of 
the propagation vector P we can demonstrate [24] that 
the vector T tangent to the polar diagram of L lies 
perpendicular to the vector P. A polar representation 
of the vector L gives 

L 2 = f ( f i )  cos fl (7) 

L3 = f ( f l )  sin fi (8) 

with 

L -  L = (f(fi))2 (9) 

In these equations fl = a - (~/2) is the polar angle 
of L. The relations for P follow from researching the 
expressions for the components A (fl) and B(fl) of the 
derivative of the rotating vector L with respect to the 
polar angle fi, We finally obtain the following relations 
[24] 

av3 _ R(/~)  
-~p = + (f(fi))-------5 (10) 

B(/~)  
dx2 = + ~ d t  ( l l )  

_ A( /~)  . (12)  dx 3 = + ~ at 

which characterize completely the displacement of a 
surface profile element within the bulk. The choice 
between the " + "  and the " - "  sign is determined by 
the value of the angle that the vector L makes with its 
derivative. Thus it is now necessary to know the 
function f(fl) which represents the magnitude of the 
dissolution slowness vector L to track the changes in 
the shape of the dissolution profile during the dis- 
solution. In the following section we propose a method 
to express mathematically the magnitude L of the dis- 
solution slowness vector which in three dimensions 
consists of a tensorial representation of the dissolution 
slowness. 
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Figure 3 The three-dimensional model. Representation of the 
dissolution slowness vector, L, and of the slowness surface. 

2.2. A tensorial representation of the 
dissolution slowness 

We now consider briefly the vectorial analysis in the 
three-dimensional model. From the preceding section 
it clearly appears that in three dimensions the dissol- 
ution may be described by a dissolution slowness 
vector L whose magnitude and direction depend on 
the orientation of a particular surface element, ds, in 
space (x~, x2, x3). As the orientation of the surface 
element varies the extremity of the dissolution slow- 
ness vector L lies at different points of a representative 
surface (Fig. 3) denoted for convenience as the slow- 
ness surface. The problem is now to find in polar 
coordinates the equation of the dissolution surface in 
order to construct the trajectory of a given moving 
surface element. It must be pointed out that here we 
adopt the system of notation for designating the 
orientation of  a crystalline surface specified in the 
IEEE standard on piezoelectricity [25]. In this conven- 
tion two rotations suffice to define the orientation of  
the surface element, the first rotation, q~, is about the Z 
axis while the second rotation of 0 is about the crystal- 
lographic X axis (Fig. 4). The equation representing 
the slowness surface is therefore a function of  the 
variables W and 0. However examination of Fig. 3 
shows that it is also pertinent to choose for alternative 
variables the three cartesian components, ni, of  the 
unit inward normal n of the surface element. The 
orientation of  the moving surface element at a given 
point is effectively known as soon as the three corn- 

Figure 4 The doubly rotated quartz plates. 

x~ x3 Xz 

ponents ni which depend only on the rotation angles, 
(q~, 0) are determined. Thus an alternative form of the 
representative equation of  the slowness surface is 

L = F(n l ,  n2, n3) (13) 

since a picture of the slowness surface follows the 
evaluation of  the magnitude, L, of  the dissolution 
slowness vector L for all possible values of  the com- 
ponents nl, n2, n3 of the inward normal. 

At first sight a rigorous mathematical treatment of  
the three-dimensional dissolution problem seems 
intractable. However an approximate solution which 
provides valuable information is obtainable using a 
polynomial representation of the function F in which 
three variables nl, n2 and n 3 are involved. Thus we can 
write 

L = Do + a~nl + a2n2 + a3n3 + b in  2 

+ b2n~ + b3n~ + b4n2n3 + bsnln3 

+ b6nln2 + cln~ + . . .  (14) 

In fact it is more convenient to rewrite Equation 14 
in the more compact form 

L = D O 4- D in  i d- Di jn in  j 4- Dij~ninjrl  k 

+ Duktninjnkn i + . . .  (15) 

in which clearly the coefficients Do, D~, Du, D, jk, 
D~jk~ . . . .  are components of  tensors of  rank 0, 1, 2, 
3, 4 , . . .  In a general way these tensors are designated 
as dissolution tensors. 

Since in a N-order polynomial representation one 
cannot distinguish the product of components n~ n~ n~ 
(with N = ~ + fi + ~) from the product n~ n~ n~ it 
appears that the N subscripts can be interchanged 
without modifying the values of the tensor coefficient. 
Moreover the N-subscript dissolution constants refer 
to the cartesian axes (Fig. 4) and some of  them may be 
zero due to symmetry. Hence the reduction in the 
number of dissolution constants D O up to  Dijk.lm n is 
performed here by considering the degree of symmetry 
of quartz crystals. Since a quartz crystal is distinguished 
by an axis (the crystallographic X axis denoted here as 
the cartesian x~ axis) of twofold symmetry and by an 
axis (the crystallographic Z axis or the cartesian x3 
axis) of threefold symmetry the two following coor- 
dinates transformations are to be made. 

(1) The transformation concerned with the twofold 
symmetry in which the component n; of the primed 
inward normal n' in the new rotated system are 
expressed in terms of the components n~ referred to the 
X I, X2~ X 3 a x e s  as  

n~ = nl n~ = - n2 n~ = - n3 (16) 

(2) The threefold symmetry operation in which the 
orientation of the new axes is specified by the follow- 
ing transformation matrix 

l 2 3 

l '  C S 0 

2' - S  C 0 

3' 0 0 1 

where C = cos 120 ~ and S = sin 120 ~ . 

(17) 
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T A B L E  I The  independen t  coefficients of  the dissolut ion ten- 
sor  o f  r ank  N for the  t r igonal  class 32. Except  for the tensors  o f  r ank  
0 and  1, the n u m b e r  o f  d issolu t ion  cons tan t s  is a lways greater  than  
the  number ,  v, o f  independen t  coefficients 

N Identif icat ion of the independen t  coefficients: 

0 1 D O 
1 0 

2 2 DII, D33 
3 1 0111 
4 4 DIIII , DII23 , DII33 , 03333 
5 2 DIIIII, DII13 3 
6 6 Olllllt , 0111123 , DII1133 , D112333 , D1t3333 , D333333 

The rather cumbersome calculations are performed 
up to the sixth-order tensor. As an example the cal- 
culations necessary to determine the independent 
coefficients of the dissolution tensor of rank 5 are 
indicated in Appendix A. The relevant results are 
displayed in Table I. We observe that in general 
tensors of odd rank have only a few independent 
coefficients, for example tensor of rank 5 has only two 
independent dissolution constants. In contrast the 
number of independent dissolution constants increases 
to 6 for the sixth-order tensor. 

If the restriction on the dissolution constants is 
taken into account the general form of Equation 14 
reduces to 

L = Do + D,l(n~ + n~) + D,,,n,(n~ - 3n~) 
+ + + 4 

+ 601133n~(n21 + n~) + 402223n2n3 

• (3n  - + + - 3nb 
2 2 �9 .q- l O D t i ] 3 3 n t n 3 ( 3 n 2  - -  r l~)  + D , m , , ( r t  2 ---I- rt~) 3 

- -  lOD,,,mn2n3(n] + n~)(n] - -  3n~) 

+ + + 

x - -  n2)D112333 -t- --}- n2)D113333 

-{- n6D333333 (1 8 )  

if we limit our investigation to tensor of rank 6. 
For a surface obtained by a double rotation of the 

reference Y-cut plate [25, 26] and specified by the 
angles of rotation (W, 0) the components of the inward 
normal to the surface can be expressed as 

n~ = sinUdcos0 

n 2 = - -  c o s t t J c o s  0 

n 3 = - sin 0 

(19) 

Substituting into Equation 19 yields the following 
relation 

L = L0 + ~ Aj cosJ0 + ~ Bk cos~0 sin 3'P 
j k 

+ ~ Ct cos10 sin 0 cos 3tP (20) 
1 

where for convenience a shortened notation is used 
and where the coefficient A j, Bk and Cj are expressed 
in terms of the dissolution constants. When we restict 
our calculations to tensor of rank 6 the subscripts j 
and l cannot take values which exceed respectively 6 

and 5. Moreover for the second term of Equation 20 
the subscript will be even while for the other terms the 
subscript will be odd. 

It should be pointed out that from a mathematical 
point of view the discrepancy between the exact 
formulation and the approximate Equation 14 may 
be seriously reduced by extending the tensorial 
representation to tensors of very high order. Such 
a consideration justifies the use of the shortened 
notation of Equation 20; this form becoming very 
convenient in specific numerical applications. 

The above equation involves the coefficients L0, A j, 
Bk and C~. Evaluation of these coefficient requires a 
great number of experimental measurements on the 
dissolution rate of differently oriented quartz plates. 
In this paper the dissolution slowness, L, is measured 
for various singly rotated quartz plates. Data on at 
least 30 differently oriented quartz plates are collected. 
Hence, in the following section, as an example of the 
general model the solutions L0, Aj and C~ of the system 
of linear equations of the general reduced form 

L = L0 + ~ Aj co#0 + ~ Ct sin 0 cos'0 (21) 
j l 

with 16 unknowns are presented. The adequacy of this 
tensorial representation of the dissolution slowness is 
then discussed in terms of the shape of the Z' dis- 
solution profiles which are formed on singly rotated 
surfaces during prolonged etching. 

3. Results 
3.1. Experimental results 
The resonators used were synthetic planoconvex 
quartz plates. A singly rotated quartz plate with a 
negative angle 0 equal to - e degrees is denoted BT-a. 
Similarly an AT-fl cut corresponds to a positive value 
of/3 degrees for the angle of rotation 0. Before etching 
the various "AT" and "BT" plates were lapped with 
a 5 ffm abrasive. These plates were etched in a con- 
centrated ammonium bifluoride solution (typical 
concentration 10.5 mol I- ~) at a constant temperature 
in the range 290-360 K for successive periods of time 
of 30 rain. Two procedures were used to characterize 
after any time of etching the surface texture of etched 
plates. Firstly surface topography data were deter- 
mined from profilometry traces given by a micro- 
processor-based surface profilometer. In particular 
the traces were made along the rotated Z'  direction 
which lies in the plane surface of singly rotated res- 
onators. Complementary observations on the top- 
ography of etched surfaces were obtained by scanning 
electron microscopy. 

3.2. The dissolution rate 
For a thin plate (about 1 mm thick for 13.2mm in 
diameter) it is reasonable to identify the normal dis- 
solution rate, vy, with the change in the decrement of 
thickness, Ad, with the etching time t. Effectively, 
previous studies [11, 27] have shown that at a given 
etching temperature T, the changes in the thickness 
are linear with time t. Hence it is possible to evaluate 
the dissolution rate, VN, from frequency measure- 
ments. If the resonance frequency,f, of a quartz plate 
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Figure 5 Plot of Lnv N against T -1 for various singly rotated quartz 
plates. Curves, A, B, C are respectively for the BT-21, BT-31 and 
BT-36 plates. 

in thickness shear vibration is related to the thickness, 
d, of the quartz plate by the equation 

f = K d  -~ (22) 

where Kis a constant depending on the cut and on the 
overtone, it is easy to see that logarithmic differen- 
tiation of Equation 21 gives the decrement in thickness 
as 

Af (23) 
Ad = - Kf--~r 

where Af = fr - f is the change in frequency owing 
to the chemical attack. 

Following the above procedure the normal dissol- 
ution rates were evaluated from the temperature slope 
of the linear variation of Ad with t in order to plot the 
data in the form v N against 1IT. Data illustrated in 
Fig. 5 are fitted approximately by a pair of straight 
lines. The particular behaviour for freshly lapped 
plates is in general understood [10, 11, 27, 28] in terms 
of an enhancement of the etch rate for the lower 

etching temperatures due to a strained surface layer 
produced by mechanical lapping. 

Owing to the influence of the initial surface damage 
and to avoid some difficulties, the dissolution rate, v~, 
was finally measured for the various cuts by extrapol- 
ating the Arrhenius plots at a constant reciprocal 
temperature of 2.7 x 10 3 K-~. For the orientation 0 
in the range - 60 ~ to 60 ~ the normal dissolution rate, 
vN, are found to vary by a factor of 7 from one 
orientation to another. Non-symmetric oscillations in 
the dissolution rate, vN, and consequently in the dis- 
solution slowness, L, are observed. Moreover the 
dissolution slowness reaches the highest value for the 
Y-cut specimen in agreement with previous experi- 
ments [13, 16, 29]. This set of data although not com- 
plete allows us to make a tentative attempt to evaluate 
the constants, L0, Aj and C~ appearing in the system of 
Equations 21. At this stage a first representation of the 
polar diagram of L is possible for angle 0 in the range 
- 60 ~ to 60 ~ Difficulties might arise when 0 approaches 
a value close to 90 ~ or - 9 0  ~ The explanation is 
probably due to some inaccuracy in the determination 
of coefficients of high order. Unfortunately the lack 
of complete experimental data in the ranges 
- 9 0  ~ < 0 < - 5 0  ~ and 50 ~ < 0 < 90 ~ does not 
help us to give a correct estimate of these high order 
coefficients. 

The rather complicated shape of the experimental 
polar diagram as derived from Equation 21 using 
coefficients evaluated up to 16th-order may be seen in 
Fig. 6a. Some typical values of the angle 0 correspond- 
ing crudely to a minimum or a maximum of the dissol- 
ution slowness, L, are also indicated in this figure. To 
give a rough experimental verification of the efficiency 
of the present method experimental values of L are 
displayed on the polar diagram in Fig. 6b. For 0 in the 
range investigated here the data touch more and less 
the polar diagram showing that this diagram is crudely 
comparable with that one can reasonably expect from 
the data. 

3.3. The Z' profilometry traces 
A description of the changes in the shape of the Z'  
profiles produced by dissolution was achieved by 
profilometry traces made at different etching times. 
Figs 7 and 8 picture the evolution of the profilometry 
traces of two different "BT" cuts with the depth, 
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Figure 6 (a) The experimental polar diagram of L in the plane YZ. Some typical values of the angle of rotation 0 are indicated in the figure. 
(b) Experimental fit of the polar diagram; data (*) are essentially collected for 0 in the ( -  60 ~ 60 ~ range. 
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Figure 7 Changes in the surface profilometry traces made along the 
Z '  axis with the depth, Ads, of etch of a BT-31 plate. 

Ads = Ad/2, of etch. From Figs 7 and 8 some essential 
features are typified. 

(1) After a critical depth of etch was reached the Z'  
dissolution profiles for a given cut remain stable in 
shape. 

(2) The shape of the etch profile is characteristic to 
the crystal orientation. 

(3) For typical orientations repeated etchings result 
in a more or less pronounced enlargement of the 
dissolution profiles along the Z '  axis. 

Hence to establish the consistency of the present 
model we only need to collect information on the 
topography of various deeply etched quartz plates 
which reflect the influence of the orientation on the 
final shape of the Z '  dissolution profiles. This may be 
seen in Fig. 9 which illustrates some typical results on 
the Z'  profiles of different "BT"-cut plates with 0 
varying from 0 ~ to - 46 ~ For the N H a F  �9 HF etchant 

L ~ ~  o.5un, L 
43 ~ ,M~ '~ '~v '~  ~ ' .VJ~ . .  j ~ / J ~ f  1 

lOpm 
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23 
< 

3.14 
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Figure 8 Changes in the surface profilometry traces made along the 
Z' axis with the depth, Ads, of etch of a BT-36 plate. 
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The final Z" traces of differently oriented BT-cut plates. 
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Figure 9 

we observe that a little change of a few degrees in the 
orientation 0 gives rise to a rapid variation in the final 
shape of Z '  profiles. Similar behaviour occurs for the 
"AT"  plates where the angle of cut 0 acts as a very 
sensitive property for the surface texture which 
develops on deeply etched AT-cut plates [12]. In 
particular (Fig. 10) the final shape of Z '  traces varies 
continuously from convex to concave and from con- 
cave to convex again as the orientation 0 of AT-cut 
plates increased from 29 ~ to 49 ~ 

Since with prolonged etching distinctive etch figures 
are formed on differently oriented quartz plates, the 
crystal orientation seems to govern the dissolution 
process and causes without ambiguity the develop- 
ment of Z '  profiles of various shapes. In these 
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Figure 10 The final Z '  traces of differently oriented AT-cut plates. 
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Figure 11 The theoretical changes in the shape of an initial triangu- 
lar surface profile. The case where 0 = 0 ~ 

conditions the model presented in the above section 
based on the orientation effect may certainly apply. 
Thus it is now appropriate to treat the changes in 
shape of  the Z '  profile with orientation in terms of this 
model assuming that the variations of  the dissolution 
slowness with its polar angle is conveniently rep- 
resented by the polar diagram in Fig. 6a. 

3.4. The  numer i ca l  s imu la t i on  
In view of  the experimental results pictured in Figs 9 
and 10 interest in a graphical approach of the etching 
problem is revived. For this purpose we have devel- 
oped a numerical simulation [24] which allows us to 
follow graphically the evolution with a prolonged 
etching of either an initial triangular profile or a 
surface profile with an initial randomized shape. The 
program which evaluates the cartesian components of 
the propagation vector, P, starting from the polar 
diagram of L has been described elsewhere [24]. 
Here it is sufficient to note that the  Z '  profiles of 
differently oriented quartz plates which all lies in the 
%x2 plane are associated with a dissolution slowness 
vector L whose polar diagram may be represented by 
Equation 21. 

To compare the predictions of the present model 
with the experimental results and especially to verify 
the interest in the tensorial method as a mathematical 
procedure to determine experimentally the polar dia- 
gram of L we have chosen here, for the sake of 
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Figure 13 A s  F i g ,  11 f o r  0 = - I 4  ~ . 

simplicity, to deal essentially with an initial triangular 
profile. 

Theoretical results for the BT-cut plate with angle 0 
ranging from 0 ~ to - 4 6  ~ are displayed in Figs 11 to 
19. In the past Irving [30] noticed that certain etch 
rate-orientation relationships give rise to typical 
surface textures. In particular when the reference 
surface corresponds to a maximum of the etch rate, 
i.e. to a minimum of the dissolution slowness, a convex 
background is formed. Conversely a maximum of  the 
dissolution slowness, L, results in the development 
of a concave background structure. Examination of 
Figs 14 and 17 shows that these predictions are veri- 
fied for BT-cuts with an angle 0 respectively close from 
- 20 ~ and - 36 ~ We also observe that if the reference 
orientation is situated midway between the reference 
orientation 01 and 02 corresponding successively to a 
minimum and to a maximum of L the section of the 
resultant etched surface are found to exhibit a shape 
alternately convex and concave as evidenced for 
example by Fig. 16. 

Simulation of  the etching of AT-cut plates leads 
(Figs 20 to 23) to the formation of Z '  dissolution 
profiles whose configuration is also indicative of  the 
positions of the maximum or/and of the minimum of  
the dissolution slowness with respect to the crystal 
surface. 

4. Discussion and conclusion 
Comparison of the final profilometry Z '  traces of 
differently oriented BT-cut plates (Figs 7 to 9) with the 
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Figure 15 As Fig. 11 for 0 = 26 ~ 

final dissolution profiles (Figs 11 to 19) derived from 
the numerical simulation shows a very satisfactory 
agreement. This agreement could be exploited to 
obtain some interesting information. For example, the 
clear correspondence which exists between the quasi- 
rounded shape of the dissolution profiles depicted 
respectively in Figs 14 and 15 and the experimental 
profiles of Fig. 9 indicates that a relatively flat mini- 
mum of the dissolution slowness will certainly occur 
for 0 around - 2 4  ~ Moreover study of Z '  profil- 
ometry traces of deeply etched BT-31 and BT-41 
plates and comparison with the results of the numeri- 
cal simulation displayed in Figs 16 and 18 respectively 
also yield reliable results; similar alternate shapes are 
effectively observed for the quartz surfaces and for the 
triangular-like surface etched down to 5-6#m. In 
particular we believe that the dissolution slowness 
increases to a maximum for 0 around 37 ~ and falls to 
a minimum for 0 = 49 ~ in relative agreement with the 
experimental polar diagram. This one-to-one corre- 
spondence significantly contributes to the determi- 
nation of the positions of minima and maxima of the 
dissolution slowness [24]. The most useful information 
compiled from the systematic comparison of the 
theoretical results with the true final Z '  traces of 
BT-cut plates are listed in Table II. 

It is also of interest to discuss briefly some results 
on the AT-cut plates. Other examples of a successful 
approach in the prediction of the shape of the dissol- 
ution profiles can be considered first. The theoretical 
final profiles depicted in Figs 21, 22 and 23 look 
roughly identical to the experimental ones (Fig. 10). 
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This provides a rapid identification of the positions of 
some minima and maxima of L (Table II). However, 
the theoretical results for the AT-cut plates with angle 
18 ~ ~ 0 < 31 ~ have been found to be generally not as 
good as the results for BT-cut plates (see for example 
Fig 20). We have previously established [24] that the 
shape of the etched profile is essentially determined by 
the "distance" in degrees of the reference surface from 
a minimum or a maximum etch rate plane. Hence, the 
observed deviations may be attributed to a false 
positioning (about 9 ~ of a minimum of the dissol- 
ution slowness which in reality lies within the range 
24 ~ < 0 < 28 ~ rather than in the vicinity of 18 ~ as 
evidenced by Fig. 6a. This erroneous displacement 
of at least 6 ~ will certainly alter the shape of the 
theoretical etched profiles. However, translating this 
minimum of the dissolution from about 18 ~ to about 
26 ~ may certainly improve the predictions of the 
numerical simulation. At this point it should be 
noticed that in the present work we investigated the 
chemical etching at AT plates cut in various quartz 
bars either synthetic or natural. Only data on BT 
plates are collected from plates cut in the same 
synthetic quartz crystal. 

Since various quartz crystals certainly have different 
bulk properties affecting to some degree the rate 
of the chemical attack [30, 31], it is possible for a 
same angle, O, of rotation but for plates made from 
various crystals to observe differences in the measured 
etch rates. Specific deviations of about 20% have 
been effectively obtained for standard AT-cut plates 
(0 = 35~ ') using synthetic and natural quartz 
crystals [10]. These deviations are sufficient to limit 

T A B L E  I I  Theore t ica l  and  exper imenta l  values  of  the m i n i m a  

and  the m a x i m a  in the d i sso lu t ion  slowness as der ived respect ively 

from the po la r  d i ag ram (Fig. 6a) and  f rom the exper imenta l  changes  
in the shape of  the final Z '  t race wi th  o r i en ta t ion  

BT-cut  plates,  AT-cut  plates,  

angle  0 in degrees angle  0 in degrees  

Theore t ica l  F la t  m i n i m u m  from - 2 0  ~ 18~ 48 ~ 
m i n i m a  to - 25~ -- 450 

Theore t ica l  0 ~ - 36 ~ - 57 ~ 37~ 59 ~ 
m a x i m a  

Exper imenta l  F la t  m i n i m u m  from - 21 ~ 25~ 49 ~ 
m i n i m a  to -- 26 ~ - 46 ~ 

Exper imen ta l  0 ~ -- 36 ~ 38 ~ 
m a x i m a  
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Figure 18 As Fig. 11 for 0 = - 4 1  ~ 

considerably the accuracy of the tensorial method. 
However it might be of interest to note that successive 
tentative attempts to fit more accurately the polar 
diagram of L for positive values of the rotation angle 
using the experimental data does not cause a marked 
displacement of the positions of "extrema" of L 
related to BT-cut plates. Only the amplitude of the 
extrema is altered. Thus to minimize error in the 
experimental drawing of the polar diagram of L it 
seems necessary to perform measurements on plates 
cut in the same synthetic quartz bar. However, select- 
ing and designing at least 50 resonators with orien- 
tation 0 varying slowly from - 7 0  ~ to 70 ~ remain a 
considerable task and require a crystal of relatively 
large dimensions. This explains why in practice the 
data are partly obtained with different specimens. 

Moreover if we regard the case where we substitute 
an initial randomized surface profile to the triangular 
profile (Figs 24 and 25) it appears as expected that the 
final shape of the dissolution profiles is not affected by 
the nature of the initial profile. A final quasi-concave 
background structure develops on the BT-36 plate 
while a final Z '  profile of alternative shape is formed 
on the BT-31 surface in close agreement with the 
shapes of profiles depicted in respective Figs 16 and 17. 

It is also of interest to discuss briefly some results on 
the variation of the dissolution rate with the angle 0 of 
rotation. Effectively it is possible to evaluate the dis- 
solution rate from the theoretical dissolution profiles. 
For this, since the length and the position of successive 
profile elements vary continuously during the etching, 
we have chose to compute a centre line for any dissol- 
ution profile by a sampling method [32]. For this, we 
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define a very short sampling length and the profile is 
split into a number of sampling lengths, ls, for each of 
which, firstly new coordinates (x2, %) of a profile 
element are calculated and secondly, a separate mean 
line is computed. Note that for a typical sampling 
length of 0.2ym the effective dissolution profile 
remains graphically unchanged to the human eye 
by the sampling. The consecutive depths of etch, AdL, 
are then taken as the distances, at given abscissae, 
between the mean lines related respectively to the 
initial profile and to the etched profile. The average 
depth of etch, Ads, corresponds to the mean of AdL of 
all consecutive sampling lengths. We can then easily 
evaluate the "theoretical" dissolution rate which is 
defined as the ratio of the average depth of etch to the 
etching time. Moreover for these calculations we have 
preferred to start from a profile of initial randomized 
shape we expect to represent more accurately a lapped 
surface (see, for example, Figs 20 and 21). From 
values related to BT plates, Table III has been con- 
structed for a rapid comparison. The agreement with 
experiments is rather good except for the apparently 
anomalous behaviour of the BT-7 plate which requires 
confirmation by additional experimental measure- 
ments. In general where there are deviations they 
do not exceed 10%. Moreover the fact that a large 
deviation occurs at 0 = - 7  ~ is not really surprising. 
The correlation between the final Z '  trace of the BT-7 
plate (Fig. 9) and the theoretical dissolution profile 
(Fig. 12) seems not so clear as for other BT-cut 
plates. Hence it is not easy to be sure that the anomaly 
is caused solely by inaccuracies in the measurements 
of the dissolution rate. Perhaps, we need to take the 
polynomial regression to higher orders still; but as 

T A B L E  I I I  Values of  the ratio, W N e x p / V N t h ,  for differently 
oriented BT plates. VNexp and VN, h refer respectively to experimental 
values and theoretical values of  the dissolution rate 

0 (deg) VNexp/VNt h 

0 0.9 
- 7  1.75 

- 14 0.92 
- 2 1  0.98 
- 2 6  1.11 
- 3 1  0.98 
- 36 0.93 
- 4 1  0.94 
- 46 1.08 
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noticed in this case difficulties in the experimental 
work can restrict the supply of complementary reliable 
data. However, one can consider this deviation 
accidental since for BT-cut plates this model leads to 
properties (changes in etch rate with orientation, 
surface features) quite similar, qualitatively and quan- 
titatively, to those observed experimentally. 

In view of this excellent correlation we can conclude 
that, in combination with a vectorial analysis of the 
dissolution problem, a tensorial representation of the 
dissolution slowness appears as a recommendable 
method for quantitative work in study" of etched 
quartz surfaces. Moreover, it should be emphasized 
that this method becomes particularly valuable when 
practically qualitative informations on the shape 
of etched sections of quartz crystals undergoing 
photolithography and anisotropic etching [32-34] are 
needed. 

For doubly rotated quartz plates the dissolution 
slowness could vary in a complicated way with the 
angles of cut. Hence the investigation has not yet been 
made systematically. However, the results collected 
here seem sufficient to conclude that this model should 
provide valuable information about the shape of the 
dissolution profiles in any direction of any given cut. 
For this purpose it becomes necessary to perform a 
great lot of experiments on quartz plates obtained 
firstly, by rotation of various amounts q~ about the 
Z axis and secondly, by rotation of various amounts 
0 about the Y axis. These experiments are rather 
fastidious, but the information one obtains is essential 
and ensures some progress toward the exact geometri- 
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surface profile. The case where 0 = - 3 1  ~ 

cal representation of the slowness surface. It is effectively 
imperative to find the formulation of Equation 20 if 
we wish to be able to detect theoretically the surface 
texture of the shape of etched sections of doubly 
rotated quartz plates. These long investigations will be 
reported in future papers. 
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Appendix: Determinat ion of the 
independent dissolution 
constants of the tensor 
of rank 5 

In a transformation from axes (Xl, x2, X3) to axes 
t ! 

(X'l, x~, x3) let the dissolution constants Di', Di~, Dijk 
and so on be referred to the primed system of arbitrary 
orientation. 

A1. Reductions due to the twofold axis 
We start with the axes x~, x~, x~, coinciding with the 
reference axes and consider a transformation defined 
by a rotation of the primed axes through an angle of  
180 ~ about the x I axis. This determines a transform- 
ation which in accord with the two-fold symmetry 
brings the crystal into an equivalent position with 
regard to its structural position. Hence here the dissol- 
ution constants are in no way affected thereby. Thus 
with respect to this specific transformation the dissol- 
ution constants which do not vanish are the following 

DII l l l ,  D11122, D11123, D11133 

012222, 012223, 012233, D12333, 013333 

They evidently involve an even number of subscript 2 
or/and 3. 

A2. Reductions due to the threefold axis 
Now we consider the transformation where the direc- 
tion cosines, %, for this transformation are 

C S 0 

- S  C 0 

0 0 1 

where C = cos (120 ~ and S = sin (120~ 
The primed dissolution coefficients D~k~m referred to 

this particular transformation are readily identified as 
equivalent to the dissolution constant Dijk~m referred to 
the reference axes Xl, x2, x3. 

One can now convert the five-subscript coefficient 
by applying the usual transformation rule for fifth- 
order tensor 

O~jkl m = ainajoakpalqamrDnopq r 

For dissolution constants involving subscripts 
equal to 1 and/or 2 we obtain equations of the form 

( C  5 - 6 C 3 3  2 q- 3 C 8  4 - 1)Ol1122 

q- ( 3 C 3 S  2 - 2CS4)D12222 + C3S2DI1111 = 0 

(6C2S  3 --  3 C 4 S -  $5)D11122 

-+- ( 2 C 4 S -  3C2S3)D12222 - C2S3DI1111 = 0 

10C2S3D11122 + 5C4SD12222 + S5DIlllI  = 0 

This system of three equations yields the following 
relations between the coefficients D~llJ~, D1112 2 and 
D 1 2 2 2 2  

3D11~1~ = -- 5D12222 

D11111 = - 5D11122 

T u r n i n g  to  t he  d i s s o l u t i o n  c o n s t a n t s  D~ 1133 a n n d  D12233 

the transformation rule provides the two equations 

(C 3 - 1)D11133 + 3C82D12233 = 0 

CS2D11133 + ( C  3 - 1 --  2CS2)012233 = 0 

for the two unknowns. We readily find the relation 

011133 = --012233 

It is left as an exercise for the reader to show that the 
d i s s o l u t i o n  c o n s t a n t s  D11123, D12223, 012333 a n d  D13333 
must be zero. 
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